전기변색 성능 향상을 위한 바나듐산화물 막의 결정성 제어 효과

김규호 · 배주원 · 이태근[†] · 안효진[†] 서울과학기술대학교 신소재공학과

Crystallinity Control Effects on Vanadium Oxide Films for Enhanced Electrochromic Performances

Kue-Ho Kim, Ju-Won Bae, Tae-Kuen Lee^{\dagger} and Hyo-Jin Ahn^{\dagger}

Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea

(Received May 10, 2019 : Revised June 18, 2019 : Accepted June 18, 2019)

Abstracts In the present study, vanadium oxide(V_2O_5) films for electrochromic(EC) application are fabricated using sol-gel spin coating method. In order to optimize the EC performance of the V_2O_5 films, we adjust the amounts of polyvinylpyrrolidone(PVP) added to the solution at 0, 5, 10, and 15 wt%. Due to the effect of added PVP on the V_2O_5 films, the obtained films show increases of film thickness and crystallinity. Compared to other samples, optimum weight percent(10 wt%) of PVP led to superior EC performance with transmittance modulation(45.43 %), responding speeds(6.0 s at colored state and 6.2 s at bleached state), and coloration efficiency(29.8 cm²/C). This performance improvement can be mainly attributed to the enhanced electrical conductivity and electrochemical activity due to the increased crystallinity and thickness of the V_2O_5 films. Therefore, V_2O_5 films fabricated with optimized amount of PVP can be a promising EC material for high-performance EC devices.

Key words electrochromic performance, film structure, crystallinity, vanadium oxide, spin-coating.

1. 서 론

최근 전기변색 소자(electrochromic devices)는 가해진 전압에 따라 색, 반사도, 투과도 와 같은 광학적 특성을 가역적으로 변화시킬 수 있는 독특한 특성 덕분에, 스마 트윈도우, 평면 표시 소자, 사이드미러, 기능성유리 등의 다양한 소자에 응용되면서 많은 관심을 받고 있다.¹⁻³⁾ 전기변색 소자는 재료의 산화-환원 상에 따른 밴드갭의 변화에 의해 가역적으로 광학적 특성을 제어할 수 있는 메커니즘을 갖는다. 전기변색 소자는 일반적으로 5개의 기능성 층이 겹쳐진 구조(전해질, 두개의 투명전도막, 환 원 전기변색 막 그리고 산화 전기변색 막)로 이루어져 있다.⁴⁻⁶⁾ 해당 소자를 실제로 사용하기 위해서는 투과범 위(transmittance modulation), 응답속도(response time), 사 이클 수명(cycle retention), 변색 효율(coloration efficiency) 과 같은 성능의 여러 측면을 고려해야 하며 이러한 특 성들을 향상시키기 위한 연구가 계속되고 있다.^{7,8)} 전기 변색 소자의 경우 전압이 인가되었을 때 전해질과 전기 변색 막 사이에서 양이온(H⁺, Li⁺)의 삽입 및 탈리를 동 반한 산화환원 반응에 의해 구동되기 때문에 전기변색 막은 전기 변색 소자의 성능을 결정짓는 핵심적인 구성 요소로 알려져 있다. 그 중 우수한 안정성과 신뢰성 등 으로 인해 잘 알려져 있는 전기변색 재료로는 텅스텐산 화물(WO₃), 바나듐산화물(V₂O₅), 티타늄산화물(TiO₂), 니켈산화물(NiO), 몰리브덴산화물(Nb₂O₅) 등이 있다.^{9,10)} 그 중에서도 특히 바나듐산화물은 전기화학 반응에 따

[†]Corresponding author

© Materials Research Society of Korea, All rights reserved.

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

E-Mail:hjahn@seoultech.ac.kr (H.-J. Ahn), tklee@seoultech.ac.kr (T.-K. Lee)

른 이온의 삽입, 탈리 정도에 따라 다양한 색(파랑-초록 -노랑) 변화가 가능하고 산화변색재료와 환원변색재료 모 두로 사용이 가능하다는 예외적인 특성 덕분에 유망한 변색재료로 보고되고 있다. 하지만, 바나듐산화물은 전기 변색 특성을 저하시키는 낮은 전기전도도와 이온확산계 수를 가지고 있기 때문에, 전기변색 재료로써 실제 사 용이나 산업적 응용은 아직 제한되고 있다. 그에 따라 바나듐산화물의 형상, 결정성, 전자구조를 제어하여 좁은 투과범위, 낮은 변색효율, 느린 반응속도와 같은 전기변 색 특성의 한계를 극복하고자 하는 노력이 계속되고 있 다.¹¹⁻¹³⁾ 특히 결정성 제어 연구는 막의 구조에 변화를 주 어 전자의 이동성을 증가시킬 수 있고 그에 따라 전기 변색 특성을 향상시킬 수 있는 방법 중 하나이다. 결정 성을 제어하는 방법에는 열처리 온도 및 시간 조절, 가 스 분위기 조절, 압력 조절 등의 공정적인 방법이 있고 고분자 물질 첨가와 같은 화학적 처리 방법이 있다. 그 중에서도, polyvinylpyrrolidone(PVP)의 첨가는 열처리 시 에 특정 면의 성장을 돕는 역할을 하며, 이러한 특성 때 문에 결정성 향상 연구에 응용되고 있다.14) 결정도 향상 에 따른 전기전도도 증가는 전기변색 막 내부에서의 전 자 이동을 용이하게 하며 전해질과 전기변색 막의 계면 에서의 전기화학 반응을 촉진시켜 반응속도의 단축으로 이어질 수 있다. 예를 들어, Tong 등은 전기흡착 공정 을 이용하여 ITO 기판 위에 합성한 3차원의 결정질 바 나듐산화물 나노로드가 전기화학적 반응 촉진을 통해 비 정질 바나듐산화물보다 뛰어난 전기변색 성능(투과범위, 반응속도, 변색효율)을 나타낸다고 보고하였고, Kamal 등 은 스퍼터링 공정시 산소농도를 조절하여 결정성을 제 어한 텅스텐산화물막을 제작하여 반응속도를 단축시키는 연구를 보고하였다.15,16) 하지만 아직 용액공정 기반 바 나듐산화물 막을 이용한 전기변색 소자를 상용화하기에 는 성능이 부족하며 그에 따라 바나듐산화물 막을 최적 화하여 전기변색 소자의 성능을 개선시키는 연구가 필 요한 상황이다.

따라서 본 연구에서는 용액 제조시 PVP첨가량 조절을 통해 바나듐산화물 막의 결정성을 제어하여 전기변색 성 능을 최적화하였다. 용액공정 기반인 스핀코팅법은 가격 이 저렴하고 공정이 단순하여 쉽게 응용될 수 있다는 장 점이 있기 때문에 본 연구에서 적용되었다. 또한 우리는 PVP 첨가량에 따른 바나듐산화물 막의 형태적, 구조적, 전기적, 전기화학적 특성을 분석하여 전기변색 특성 과의 상관관계를 파악하고 성능향상 메커니즘을 규명하였다.

2. 실험 방법

바나듐산화물 막은 스핀코팅법을 이용하여 상용 fluorine-

doped tin oxide(FTO, Pilkington, 8.0 Ω/□) 기관 위에 제조되었다. 먼저, FTO 기판은 아세톤, 에탄올 및 증류 수로 각각 15분씩 초음파처리 하여 세척한 후 건조시 켰고 스핀코팅을 위한 졸 용액은 5 vol%의 hydrogen peroxid(H2O2, Junsei)와 95 vol%의 증류수가 혼합된 용매 에 0.1 M의 고정된 농도로 vanadium oxide(V₂O₅, Alfa Aesar)를 첨가한 후 3시간동안 상온에서 혼합해 준비하 였다. 그 후, 첨가제로서 위 용액에 PVP가 첨가되었으 며 V₂O₅ 막에서의 PVP 첨가 효과를 확인하기 위하여 PVP의 무게비를 0, 5, 10 그리고 15 wt%로 조절하였 다. 그런 다음 준비된 졸 용액으로 2,000 rpm에서 30초 간 스핀코팅을 2회 반복 진행한 후 500 °C의 대기분위 기에서 1시간 동안 열처리하여 V₂O₅ 막을 제조하였다. 제어된 PVP 첨가량에 따라4 종류의 V2O5막을 제조하였 으며 본 논문에서 bare V₂O₅, 5PVP-V₂O₅, 10PVP-V₂O₅ 그리고 15PVP-V2O5로 각각 표기하였다.

제조된 V2O5 막의 표면 및 단면 형상을 분석하기 위 하여 주사전자현미경(field-emission scanning electron microscopy, FE-SEM, Hitachi S-4800)을 이용하였다. 구 조 및 화학 분석은 X-선 회절 분석(X-ray diffraction, XRD, Rigaku Rint 2500) 및 X-선 광전자 분석법(X-ray photoelectron spectroscopy, XPS, ESCALAB 250 equipped with an Al K_a X-ray source)을 통해 진행하였다. 전기 적 특성은 홀 효과 측정시스템(hall-effect measurement, Ecopia, HMS-3000)을 사용하여 분석하였고 전기화학 및 전기변색 특성은 각각 작업전극(바나듐산화물 막), 기준 전극(Ag wire), 상대전극(Pt wire)으로 구성된 삼전극 시스 템과 함께 전위차계[potentiostat/galvanostat(PGSTAT302N, FRA32M, Metrohm Autolab B.V., Netherlands)]를 이 용하여 측정하였다. 여기서 전해질은 propylene carbonate (C₄H₆O₃, Aldrich)에 1 M lithium perchlorate(LiClO₄, Aldrich)를 혼합한 용액을 사용하였다. 또한 전기변색 소자의 반응속도 및 변색효율과 관련된 요소인 전기화 학 반응에 따른 실시간 광학적 특성을 분석하기 위하 여 자외선-가시광선 분광광도계[ultravioletvisible(UV-vis) spectroscopy, Perkin-Elmer, Lambda-35]를 사용하였다.

3. 결과 및 고찰

Fig. 1(a-d)는 PVP 첨가량에 따른 바나듐산화물 막의 표면 형상 이미지를 보여준다. PVP가 첨가되지 않은 bare V₂O₅[Fig. 1(a)]의 경우 FTO 기판 위에 부분적으로 코팅된 형상이 나타나는데, 이러한 불균일성은 스핀코팅 시 용액에 점도 및 접착성을 부여하는 고분자인 PVP가 첨가되지 않았기 때문이다.¹⁷⁾ Fig. 1(b)에서 보이는 5PVP-V₂O₅의 경우는 바나듐 산화물이 FTO 기판위에 균일하

Fig. 1. (a-d) Top-view and (e-h) cross-view FESEM images obtained from bare V_2O_5 , 5PVP- V_2O_5 , 10PVP- V_2O_5 and 15PVP- V_2O_5 , respectively and (i) EDX spectrum obtained from 10PVP- V_2O_5 .

게 코팅된 것을 확인할 수 있고 일부 로드형상이 나타 난다. 이후 10PVP-V2O5, 15PVP-V2O5[Fig. 1(c, d)]에서 는 PVP 첨가량이 점점 증가할수록 특정 면 방향의 성 장이 촉진되어 로드형태의 결정이 점점 길게 성장하는 것을 확인할 수 있으며, 성장이 진행될수록 바나듐산화 물 로드 간의 빈공간이 점점 커지게 된다. 이는 샘플들 의 단면 형상 이미지[Fig. 1(e-h)]에서도 확인할 수 있 다. 공통적으로 650 nm 정도의 FTO 층이 보이고 그 위 에 결정 성장도에 따라 5PVP-V2O5는 84.17 nm, 10PVP-V₂O₅는 124.05 nm, 15PVP-V₂O₅는 181.64 nm두께의 바 나듐산화물이 각각 형성된 것으로 나타난다. Fig. 1(i)는 FTO 위에 코팅된 10PVP-V₂O₅ 막의 energy dispersive X-ray spectroscopy(EDX) spectrum 분석 결과를 나타내 며, FTO 기판에 해당하는 Sn 피크 및 분석 전 코팅한 Pt 피크와 함께 V2O5의 형성을 나타내는 V와 O 피크 를 확인할 수 있다. 15PVP-V₂O₅의 경우 결정 성장에 따 른 바나듐산화물 사이의 빈공간이 단면 이미지에서 더 욱 극명하게 나타나며, 이러한 불균일한 막의 형상은 전 기전도도를 저하시키는 것으로 보고되고 있다.18) 따라서

PVP 첨가량의 변화는 막의 결정성 및 형상 변화를 야 기하여 전기변색 성능에 크게 영향을 줄 수 있을 것으 로 판단된다.

Fig. 2(a)는 FTO 기판 위에 코팅된 bare V₂O₅, 5PVP-V₂O₅, 10PVP-V₂O₅, 15PVP-V₂O₅막의 X-선 회절패턴을 보여주며 비교를 위하여 reference SnO2 샘플의 회절을 그래프 하단에 나타내었다(JCPDS No. 41-1445). 모든 샘플들은 공통적으로 기판으로 사용된 FTO 막의 회절 패턴이 나타나는데, 코팅된 막과의 두께 차이로 인해 바 나듐산화물 막 보다 상대적으로 큰 픽이 나타나는 것을 확인할 수 있다. Fig. 2(b)는 FTO 기판을 제외한 코팅 된 바나듐산화물 막의 X-선 회절패턴을 자세히 분석하 기 위하여 해당되는 범위를 확대한 데이터를 보여준다. PVP가 첨가되지 않은 bare V2O5를 제외하고 모든 샘플 에서 orthorhombic바나듐산화물(JCPDS No. 89-0612)의 (001)면에 해당하는 회절 피크가 검출되었다(20.2°). Bare V2O5의 경우에는 스핀코팅시 졸에 PVP가 첨가되지 않 았기 때문에 점도가 부족하여 막이 잘 형성되지 못했고 PVP의 첨가량이 증가할수록 해당 피크가 점점 커지게 된

Fig. 2. (a) XRD curves and (b) magnified curves of bare V2O5, 5PVP-V2O5, 10PVP-V2O5 and 15PVP-V2O5 on FTO substrate.

Fig. 3. XPS spectra obtained from V $2p_{3/2}$ for (a) bare-V₂O₅ and (b) 10PVP-V₂O₅.

다. 이는 PVP 첨가에 따른 바나듐 산화물의 (001)면에 대한 결정성 향상으로 해석될 수 있으며 향상된 결정성 은 막의 전기전도도에 주요한 영향을 끼치는 요소이기 때문에 전기화학적 성능 촉진으로 이어질 수 있다. 이 어서 샘플의 화학적 결합상태를 정확히 확인하기 위해 bare V2O5와 10PVP-V2O5에 대한 X-선 광전자 분석을 실시하였다. Bare V2O5의 경우 [Fig. 3(a)] V 2p3/2 X-선 광전자 스펙트럼을 보면, 516.95 eV에서 V⁵⁺, 515.26 eV 에서 V⁴⁺에 해당하는 특성픽이 각각 확인되며 이는 V₂O₅ 상이 일부 형성되었음을 의미하지만,¹⁹⁾ 불균일하고 적은 코팅량으로 인하여 특성픽의 강도가 매우 낮게 나타나 는 것을 확인할 수 있다. 10PVP-V2O5의 경우[Fig. 3(b)] 균일하게 성장된 바나듐산화물 막에 의해 동일한 위치 에서 bare V2O5보다 각각 증가된 특성픽이 확인된다. 따 라서 X-선 회절분석 및 X-선 광전자 분석결과를 통해 바나듐산화물 막의 성공적인 형성과 PVP 첨가량에 따 른 구조적, 화학적 변화를 확인하였다.

Fig. 4는 홀 효과 측정 시스템을 통해 측정된 바나듐

산화물 막의 전기전도도 결과를 보여준다. PVP를 첨가 하지 않은 bare V2O5의 경우, 막이 정상적으로 성장하 지 못했기 때문에 7.25 × 10⁻⁸ S/cm의 낮은 전기전도도 를 갖는다. 이어서 PVP 첨가량이 5에서 10 wt%로 증가 할수록 바나듐산화물 막의 전기전도도가 1.05 × 10⁻⁷ S/cm 에서 1.58 × 10⁻⁷ S/cm로 증가한다. 이 결과는 스핀코팅 시 졸에 첨가된 PVP로 인해 점도가 향상되어 막의 두 께가 증가하고, 비정질 상태보다 우수한 전기전도도를 갖 는 (001)면의 성장이 일어났기 때문이다.¹⁶⁾ 하지만 PVP 첨가량이 증가한 15PVP-V2O5의 경우 (001)면의 성장이 더욱 진행됨에도 불구하고 거칠어진 막의 형상 및 바나 듐산화물 결정 사이 빈공간의 증가로 인하여 오히려 10PVP-V2O5보다 감소된 전기전도도(1.45 × 10⁻⁷ S/cm)를 보였다.²⁰⁾ 따라서 10PVP-V₂O₅가 PVP 첨가로 인한 결 정성 향상과 균일한 표면구조를 형성함에 따라 최적화 된 전기전도도 값을 가지는 것이 확인되었으며, 이와 같 은 결과는 전기변색 막의 특성 향상에 중요한 요소로 작 용할 것이다.

Fig. 4. Electrical conductivity of bare V_2O_5 , 5PVP- V_2O_5 , 10PVP- V_2O_5 and 15PVP- V_2O_5 , respectively.

PVP의 첨가량에 따른 바나듐산화물 막의 전기화학적 거동 특성을 파악하기 위해. -0.5에서 1.0 V의 전압범 위 내에서 20 mV/s의 전류 속도로 순환전압-전류(cyclic voltammetry, CV) 분석을 진행하였다. 측정은 3전극계로 진행되었고 이 때 작업전극으로 바나듐산화물 막, 기준 전극으로 Ag wire, 상대전극으로 Pt wire, 전해질로 1 M LiClO4 용액을 사용하였다. 순화전압-전류 분석을 통해 전 기변색 과전동안 발생한 전기화학적 반응을 유추할 수 있는데, 반응량이 많아질수록 샘플의 산화 및 환원 전 류가 커지면서 순환전압-전류 커브의 면적이 증가하는 거 동을 보이게 된다[Fig. 5(a)].²¹⁾ 순환전압-전류 커브에서 보듯이 바나듐산화물은 여러 단계의 산화환원 반응을 거 치게 되는데, 0.2 V와 0.01 V에 중심을 둔 두개의 환원 픽은 각각 α/ε 그리고 ε/δ 상변화에 해당하는 반응들이 며 0.11 V와 0.32 V에 중심을 둔 두개의 산화픽은 각각 δ/ε 그리고 ε/α 상변화에 해당하는 반응들이다. 이 결과 를 통해 orthorhombic 바나듐산화물은 전기변색 거동 중 리튬의 삽입/탈리 과정이 여러 단계를 거쳐 가역적으로 진행된다는 것을 확인할 수 있고 그 과정은 다음의 식 으로 표현된다.22)

Bare V₂O₅는 바나듐산화물 막이 제대로 형성되지 못 했기 때문에 매우 작은 산화 및 환원전류가 나타나며, PVP 첨가량이 증가함에 따라 점점 전기화학적 반응량이 커지는 것을 확인할 수 있다. 이는 샘플들의 단면 주사 전자현미경 이미지에서 확인했듯이, 막의 두께가 점점 증 가하고 결정성이 향상됨에 따라 나타나는 결과로 판단 된다. 따라서 PVP 첨가량이 증가할수록 리튬이온과 전

Fig. 5. (a) CV curves of the samples measured using a threeelectrode system in the potential range of -0.5 to 1.0 V at scan rate of 20 mV/s, (b) *In situ* optical transmittances at 415 nm traced in the potential of -0.5 (colored state) and 1.0 V (bleached state) for 30 s, and (c) variation of OD at 415 nm vs. the intercalated charge density.

자와의 반응 사이트를 증가로 인해 우수한 전기화학 활 성도를 얻을 수 있다.

전기변색 막의 주요한 성능지표에는 응답속도, 투과범 위, 변색효율(coloration efficiency, CE)이 있으며 그 중

	T _{bleached} (%)	T _{colored} (%)	Modulation (%)	Switching speed (Colored)	Switching speed (Bleached)	CE (cm ² /C)
Bare V_2O_5	76.93	60.32	16.61	15.8	14.7	19.8
$5PVP-V_2O_5$	70.73	35.50	37.23	8.2	9.5	21.4
$10PVP-V_2O_5$	65.79	20.35	45.43	6.0	6.2	29.8
$15PVP-V_2O_5$	56.52	11.07	45.45	6.8	7.5	24.5

Table 1. Summary of the EC performances for all samples.

응답속도는 전압 인가 후 변색 상태에서 소색 상태의 90 %의 투과도에 도달하는 시간으로. 투과범위는 변색 상 태와 소색 상태의 투과도 차이로 정의된다.23) 이러한 전 기변색 성능은 전기변색 막에 변색 및 소색 상태를 반 복적으로 가하면서 측정한 투과도 결과로 분석할 수 있 으며 제작한 바나듐산화물 막에 30초 간격으로 -0.5 V (소색 상태)와 1.0 V(변색 상태)를 연속적으로 가하면서 415 nm에서 측정한 in-situ 투과도 결과를 Fig. 5(b)에 나 타냈다. Table 1에서 보이는 결과와 같이 PVP 첨가량 이 증가되면서 막의 두께가 증가하고 결정성이 향상됨 에 따라 소색 상태에서의 투과도의 감소가 일어나며 전 기화학 반응량이 증가함에 따라 변색 상태에서의 투과 도가 감소하게 된다. 그 결과로 PVP 첨가량이 증가할수 록 투과범위가 16.61 %(bare V2O5)에서 45.45 %(15PVP-V2O5)로 향상되는 것을 확인할 수 있다. 또한, 첨가된 PVP로 인하여 증가된 막의 두께와 향상된 결정성의 영 향으로 인해 전기전도도가 증가하면서 전기변색 막의 응 답속도가 bare V2O5(14.7초의 소색 속도, 15.8초의 변색 속도)에서 10PVP-V2O5(6.2 초의 소색 속도, 6.0초의 변 색 속도)로 갈수록 점점 빨라진다. 15PVP-V2O5에서는 불 균일한 막의 형상과 결정 바나듐 결정 사이의 빈공간의 증가로 인해 줄어든 전기전도도에 의하여 다시 응답속 도가 느려지게 된다.

이어서 전기변색 막의 CE값은 가해진 전하량에 따라 변색되는 정도를 보여주며 광 밀도 변화량(optical density, △OD)과 전하량(charge density, *Q*/*A*)에 관한 식 (2-3)으 로 나타낼 수 있다²⁴:

 $CE = \triangle OD/(Q/A) \tag{2}$

$$\triangle \text{OD} = \log(T_b/T_c) \tag{3}$$

여기서 T_b는 소색 상태의 투과도 값 및 T_c는 변색 상태 의 투과도 값을 의미한다. Fig. 5(c) 그래프의 기울기에 서 알 수 있듯이 PVP 첨가량이 증가할수록 샘플의 CE 값이 bare V₂O₅의 경우 19.8 cm²/C에서 5PVP-V₂O₅와 10PVP-V₂O₅의 경우 21.4 cm²/C 및 29.8 cm²/C으로 각각 증가하다가 15PVP-V₂O₅에서 24.5 cm²/C로 다시 감소하 는 경향을 나타낸다. 결과적으로 10PVP-V₂O₅에서 가장 높은 CE 값을 보여주며, 이는 주어진 전하량에서 투과 범위가 증가했기 때문이다. 따라서 결과적으로 10PVP-V₂O₅는 다른 샘플들보다 우수한 전기변색 성능(변색 속 도 6.0초, 소색 속도 6.2초, 투과범위 45.43 % 및 CE값 29.8 cm²/C)을 나타냈으며, 이는 최적화된 PVP 첨가량에 의해 향상된 결정성을 갖는 균일한 막을 형성하여 향상 된 전기전도도와 전기화학 활성도에 기인한다.

4. 결 론

본 연구에서는 스핀코팅법을 이용하여 전기변색 소자 에 적용 가능한 바나듐산화물 막을 성공적으로 제조하 였으며, 스핀코팅 시 용액에 첨가되는 PVP 양을 0, 5, 10, 15 wt%로 제어하여 그들의 전기변색 성능을 최적화 하였다. PVP가 첨가될수록 바나듐산화물 막의 두께와 결 정성이 증가하는 것을 표면 및 단면 형상 이미지와 구 조분석 결과에서 확인할 수 있었고 전기적 특성 분석을 통해 PVP의 첨가가 바나듐산화물 막의 전기전도도 향 상에 영향을 미친다는 것을 보였다. 향상된 전기전도도 에 의하여 증가된 바나듐산화물 막의 전기화학적 활성 도가 응답속도, 투과범위, 변색효율과 같은 전기변색 특 성을 증가시키는 요인으로 작용하였다. 결과적으로 10PVP-V₂O₅가 다른 샘플들에 비해 우수한 전기변색 성능들(변 색 속도 6.0초, 소색 속도 6.2초, 투과범위 45.43 % 및 CE값 29.8 cm²/C)을 보였으며, 이는 비정질 상태보다 높 은 전도도를 같는 바나듐산화물 결정이 성장된 균일한 막을 형성하여 향상된 전기전도도와 전기화학 활성도를 야기한 최적화된 PVP 첨가량에 의한 결과이다. 따라서 본 논문에서 최적화된 PVP 첨가량으로 제작된 바나듐 산화물 막은 고성능 및 다기능 전기변색 소자에 적용될 전기변색 막으로 제안될 수 있다.

Acknowledgment

This study was financially supported by the Research Program funded by the Seoul National University of Science and Technology.

References

- M. Layani, P. Darmawan, W. L. Foo, L. Liu, A. Kamyshny, D. Mandler, S. Magdassi and P. S. Lee, Nanoscale, 6, 4572 (2014).
- H. Li, G. Shi, H. Wang, Q. Zhang and Y. Li, J. Mater. Chem. A, 2, 11305 (2014).
- G. J. Stec, A. Lauchner, Y. Cui, P. Nordlander and N. J. Halas, ACS Nano, 11, 3254 (2017).
- B.-R. Koo, K.-H. Kim and H.-J. Ahn, Appl. Surf. Sci., 453, 238 (2018).
- X. Chang, R. Hu, S. Sun, J. Liu, Y. Lei, T. Liu, L. Dong and Y. Yin, Appl. Surf. Sci., 441, 105 (2018).
- 6. S. Liu and X. Qu, Appl. Surf. Sci., 412, 189 (2017).
- K.-H. Kim, B.-R. Koo and H.-J. Ahn, Korean J. Mater. Res., 28, 411 (2018).
- 8. B.-R. Koo, K.-H. Kim and H.-J. Ahn, Nanoscale, 11, 3318 (2019).
- Z. Tong, S. Liu, X. Li, J. Zhao and Y. Li, Nanoscale, 3, 261 (2018).
- 10. M. Rakibuddin and H. Kim, Ceram. Int., 44, 16615 (2018).
- 11. M. M. Margoni, S. Mathuri, K. Ramamurthi, R. R. Babu, V. Ganesh and K. Sethuraman, Appl. Surf. Sci.,

449, 193 (2018).

- K.-C. Cheng, F.-R. Chen and J.-J. Kai, Sol. Energy Mater. Sol. Cells, 90, 1156 (2006).
- R. Narayanan, A. Dewan and D. Chakraborty, RSC Adv., 8, 8596 (2018).
- K. M. Koczkur, S. Mourdikoudis, L. Polavarapu and S. E. Skrabalak, Dalton Trans., 44, 17883 (2015).
- Z. Tong, X. Zhang, H. Lv, N, Li, H. Qu, J. Zhao, Y. Li and X.-Y. Liu, Adv. Mater. Interfaces, 2, 1500230 (2015).
- H. Kamal, A. A. Akl and K. Abdel-Hady, Phys. B, 349, 192 (2004).
- 17. B.-R. Koo, J.-W. Bae and H.-J. Ahn, Ceram. Int., 45, 12325 (2019).
- K.-H. Kim, B.-R. Koo and H.-J. Ahn, Ceram. Int., 44, 9408 (2018).
- C.-Y. Kim, A. A. Escuadro, P. C. Stair and M. J. Bedzyk, J. Phys. Chem. C, **111**, 1874 (2007).
- 20. J.-W. Bae, B.-R. Koo, T.-K. Lee and H.-J. Ahn, J. Korean Powder Metall. Inst., 25, 1 (2018).
- 21. B.-R. Koo and H.-J. Ahn, Nanoscale, 9, 17788 (2017).
- 22. W. He, Y. Liu and Z. Wan, C. Jia, RSC Adv., 6, 68997 (2016).
- 23. K. Wang, P. Zeng, J. Zhai and Q. Liu, Electrochem. Commun., 26, 5 (2013).
- 24. C.-K. Wang, C.-K. Lin, C.-L. Wu, S. Brahma, S.-C. Wang and J.-L. Huang, Ceram. Int., 39, 4293 (2013).